
BLE as Active RFID Tutorial presented by Jeffrey Dungen at IEEE RFID 2017

What's BLE? (Bluetooth Low Energy)

What's Active RFID?

Device which spontaneously transmits, via radio frequencies, its identifier, using its own source of power.

Is BLE Active RFID?

spontaneously transmits ("advertises") radio frequencies (2400MHz) identifier own source of power

Is BLE anything else?

Indeed! Many other things!

But let's talk about the Active RFID part because it's often overshadowed by the rest...

Jeffrey Dungen

My BLE wearable doesn't always advertise

but when it does it's Active RFID.

Do you realise what this means???

Because I'm not sure I do...

Motivation #1

BLE has become <u>the</u> de facto standard. No longer need to create yet-another-standard.

I've had the (dis)pleasure of developing Active RFID protocols from scratch at Purelink Technology (5.8GHz) and at reelyActive (sub-GHz).

Couldn't be happier to adopt BLE as a global standard!

Motivation #2

<u>Billions</u> of products, places and even *people* are carrying Active RFID devices right now!

If you had told me a decade ago that this would happen (*voluntarily even!*), I would not have believed you.

IncrediBLE! Now let's put this to good use!

Questions we'll answer

- → *How* are BLE devices **identified**?
- → What can you include in the **payload**?
- → *What* about **privacy** and **security**?
- → What best (and worst) practices are emerging?
- → *Can you* build a **RTLS** with BLE?
- → What **tools** are available?

How are BLE devices identified?

BLE Device Identification

MANDATORY

→ 48-bit advertiser address

Example 48:b1:7a:dd:4e:55

OPTIONAL

- → Short name (ASCII)
- → 128-bit UUID
- → 16-bit company code
- → 16-bit member services
- → EUI-48 / EUI-64
- → User-defined IDs

48-bit Advertiser Address

A single header bit, **txAdd**, affords *two* options:

PUBLIC OPTION

- → IEEE-assigned MAC
- → Static

RANDOM OPTION

- → Choose your own!
- → Change it whenever and as often as you like!

Local Name

Choose a short ASCII string, ex:

(((I <3 RFID)))

Jeffrey Dungen

128-bit UUID

Choose your own, ex:

128B171D-1EEE-4F1D-2017-85004C090517

Jeffrey Dungen

16-bit Company Code

Request from the Bluetooth SIG, ex:

$004C \rightarrow Apple$

Jeffrey Dungen

16-bit Member Services

Purchase from the Bluetooth SIG, ex:

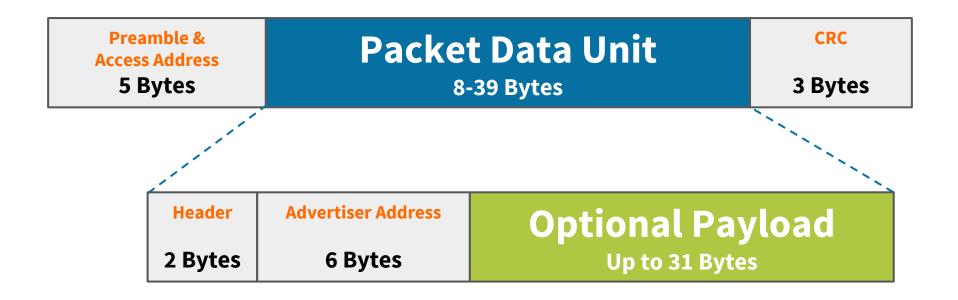
FEAA \rightarrow **Eddystone**

Jeffrey Dungen

Identification Summary

Every packet includes a **48-bit advertiser address**.

Each packet *may also contain* one or more **additional identifiers**, limited by the *max payload* of the packet.



What can I include in the payload?

BLE Packet Overview*

* Bluetooth 4.x advertising packets

31 Bytes of Payload Freedom?

Sure, as long as you respect the **Generic Access Profile** (GAP):

Length	Data Type	Data		
1 Byte	1 Byte	Up to 29 Bytes		
•••				
Length	Data Type	Data		
1 Byte	1 Byte	Up to 29 Bytes		

Pick and choose data types, as long as together they all fit!

What's a GAP Data Type?

0x01	Flags	
0x07	Complete List of 128-bit Service Class UUIDs	
0x09	Complete Local Name	
0x16	Service Data - 16-bit UUID	
Oxff	Manufacturer Specific Data	

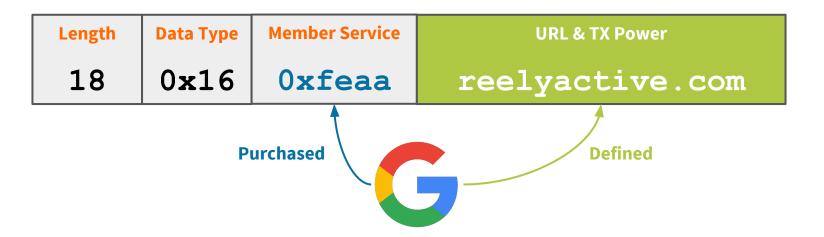
Full list: www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

Jeffrey Dungen

Examples

How about some **ASCII text** and a **128-bit UUID**:

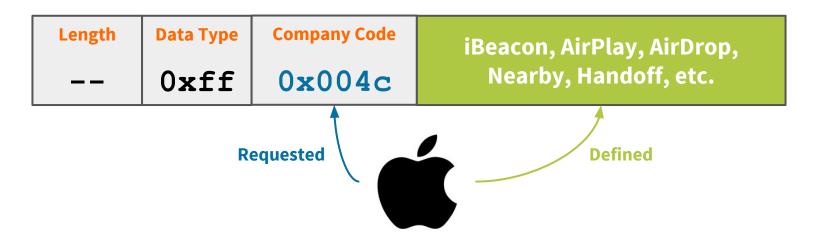
Length	Data Type	Complete Local Name
18	0x09	(((I <3 RFID)))


Length	Data Type	Complete List of 128-bit Service Class UUIDs
17	0x07	128B171D-1EEE-4F1D-2017-85004C090517

Together they're over 31 bytes so *won't fit* in a single packet!

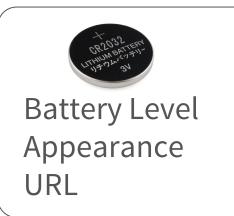
Service Data

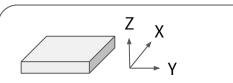
Eddystone uses **member service data** to squeeze in a **URL**:


Eddystone specification: github.com/google/eddystone

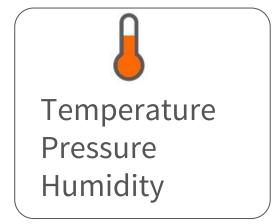
Manufacturer Specific Data

Apple uses **manufacturer specific data** extensively:




iBeacon is an open standard. Others are not.

Jeffrey Dungen



Payload Data we've Observed

Accelerometer Gyroscope Magnetometer

Typically *closed/proprietary* standards, *poorly documented* or *incorrectly implemented*!

→ Nonetheless, can often be deciphered through observation

Up to 27-bytes which you can stuff as you please.

Respect **GAP** and **vendor-defined** open standards.

What about privacy and security?

Overview of Concerns



Can I now be **identified** & **tracked** by all the BLE devices I carry???

Can my identity or sensor payload be spoofed???

Jeffrey Dungen

Advertiser Beware

Transmissions on the advertising channels can be *observed* on the advertising channels.

BLE affords plenty of flexibility for privacy/security. Apply **best practices** to reach **the best compromise**!

Jeffrey Dungen

Best and worst practices?

NotaBLE Practices

→ Privacy-sensitive identification

→ Making standards work for you

→ Security by obscurity

Privacy-Sensitive Identification

Periodically cycle the 48-bit advertiser address to hamper repeat-visit tracking and spoofing:

INSUFFICIENT

Jeffrey Dungen

GOOD: ~15 min cycle

An **observer** can:

- → easily track you for up to ~15 mins (ex: store visit)
- → *possibly* track you for longer, while in range
- → <u>not</u> associate you with a previous visit
- → identify device type, at best, by company code or other identifiers, if present

(Potentially) BAD: no cycle

Jeff's Fitbit Charge HR has used the **same identifier** for over two years now...

d9:01:4f:6b:a8:b2

Not good for **privacy**. - but -

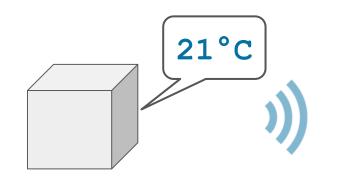
Convenient for **demos**!

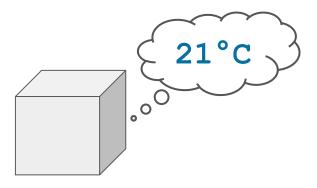
BIZARRE: cycle + static ID

Estimote sticker changes its address **constantly**, but includes **static ID** in payload...

XX:XX:XX:XX:XX

2b-ad-2b-ad-2b-ad-2b-ad


Excessive address cycling can wreak havoc on observers with resource-constrained BLE stacks!


Jeffrey Dungen

Standards = Interoperability

Beneficial that *any* **observer** understand your broadcasts?

IEEE RFID 2017

Advertiser from Company X Observer from Company Y

OBSERVE EXISTING STANDARDS

Standard Precedence

- 1. Check Bluetooth **GAP Types**
- 2. Check Bluetooth GATT Services
- 3. Check **open standards** by vendors

No standard? Check again. Still no? Create your own open standard.

Temperature Example

GAP: No.

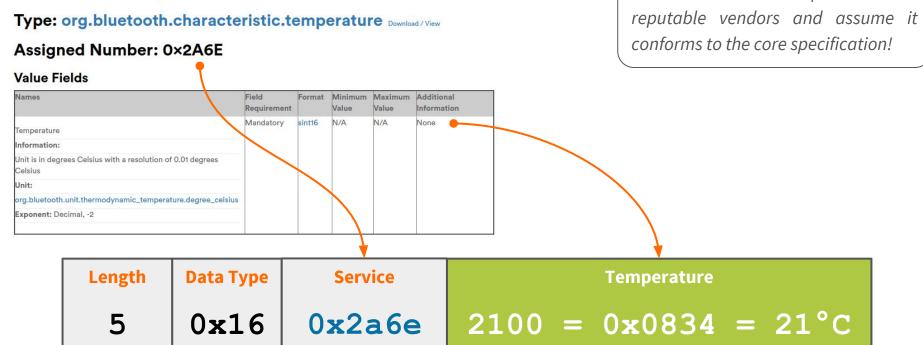
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

GATT: Yes, service & characteristic.

https://www.bluetooth.com/specifications/gatt/services

Service **0x181a:** Environmental Sensing | Characteristic **0x2a6e:** Temperature

Open Standards: Yes. Eddystone-TLM, ...


https://github.com/google/eddystone/tree/master/eddystone-tlm

Temperature-as-a-Service

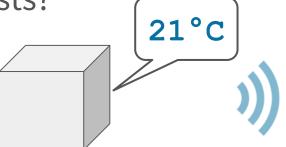
Name: Temperature

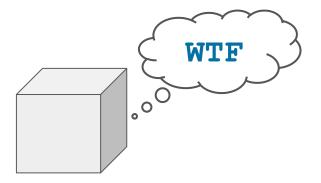

Jeffrey Dungen

IEEE RFID 2017

* we've observed this practice from

Temperature as Eddystone-TLM


Jeffrey Dungen



Security by Obscurity

Beneficial that *no foreign* observer understand your

broadcasts?

Advertiser from Company X Observer from Company Y

DESIGN YOUR OWN CLOSED STANDARD

Obscure Thoughts

- → Encryption keys
- → Cyclic counts
- → Random noise bits
- → Secret, deterministic address cycling (id & period)

A clever security design will allow your packet to be transported via *any* channel and subsequently decoded and authenticated by a *trusted* recipient. **Think M2M.**

Encrypted Eddystone-TLM

Byte offset

Field

Version

Frame Type Value = 0x20

Description

IEEE RFID 2017

TLM version, value = 0x01

Alternatively, use or inspire yourself from *existing* open standards:

5	0x16	Oxfeaa	0x200	0x2001		
Length	Data Type	Service	Eddystone-TLM			
			17	MIC[1]		
			16	MIC[0]	16 bit Message Integrity Check	
			14	SALT[0]	TO-DIL SAIL	
			13	ETLM[11]	16-bit Salt	
			12	ETLM[10]		
	•		11	ETLM[9]		
			9	ETLM[7] ETLM[8]		
	-		8	ETLM[6]	•	
	LMMy		7	ETLM[5]		
		<i>stone</i>	6	ETLM[3]		
		-	4	ETLM[2] ETLM[3]		
j i i i i i i i i i i i i i i i i i i i			3	ETLM[1]		
existina o	pen standai	COS:	2	ETLM[0]	12 bytes of Encrypted TLM data	

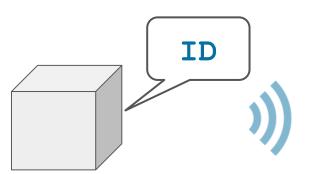
Best Practices Summary

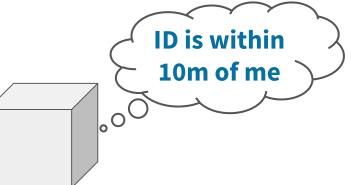
Be sensitive to privacy concerns. Understand it's a compromise.

Stick to standards whenever possible.

Leverage BLE's flexibility for elegant **DIY security**.

Jeffrey Dungen


How about BLE real-time location?



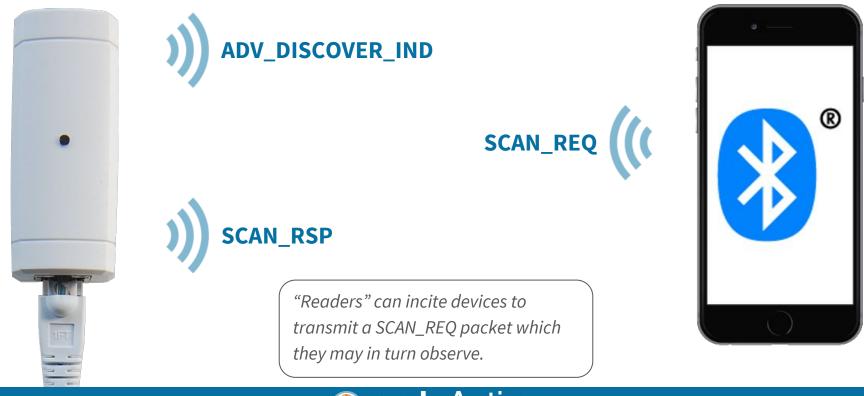
BLE RTLS Overview

Observers can **estimate** the location of a device each time it transmits an advertising packet.

The flexibility of BLE affords *many* options...

BLE RTLS Approaches

"Bring-your-own-device" & "use-our-device" strategies:


Broadcaster	Observer	Vendors	
Vendor	Vendor	9Solutions, Kontakt.io,	
Any*	Vendor	Quuppa	Consistency
Any	Vendor	Bluvision, (reelyActive),	Opportunity
Any	Any	reelyActive	

* requires specific bit-pattern in payload

BLE SCAN is "Exciting" stuff

Jeffrey Dungen

reelyActive

What tools are available?

Overview of Tools

As BLE matures, an increasing number of tools and documentation are becoming available - *but* - most focus on *paired* applications (**central-peripheral**) rather than *Active RFID* (**broadcaster-observer**).

Heed the distinction!

Breakdown of Tools

- → Mobile apps/SDKs
- → Commercial beacons
- → Dev kits

- → Your PC / SBC
- → Commercial sniffers
- → Dev kits

- → Open source software
- → Commercial software
- → Develop from scratch

Jeffrey Dungen

Sniff and Learn on Mobile!

	E India Dock Rd All Saints 🕁	RaMBLE	
P	oplar High St	SCANNER	
Auseum of Cocklands	1203 Boolar	O Charge HR	
	Aspen Way	MAC: FE:B4:	
10+ Qua	y O	Type: Fitbit, Fitbit Charge HR	
	No Name	Received: 09:23:15	
⁰⁺ 100+		First Seen: 1 week ago	
	AC: 41:91:8E:48:F6:C2 /pe: Apple, Handoff een: 03/11/2015 9:01 am	and Distance [TV] Skynet	
	zen: 03/11/2015 9:01 am	MAC: 24:48:03:	
Motor Dock	een. 03/11/2013 9.01 ann	Type: Smart TV, Samsung, Samsun Received: 09:23:25	g Electro
Heron Quays 👄	Canery Wharf	First Seen: 6 months ago	
Heron Quays		R No Name	
20+		MAC: 18:EE:69:	
	South Dr.	Type: Apple, Airplay	
~	50+	Received: 09:23:23	
		First Seen: 7 months ago	
11 10	South Quart 20+	TV] UE32J5500	
afford St	South Quay € 20+	MAC: 24:4B:03:	-
		Type: Smart TV, Samsung, Samsun Received: 09:23:24	g Electro
	e e	First Seen: 7 months ago	
Alpha Grove	20+	+ Charge HR	
ନ୍ MIL	LWALL 20+ 5 LT	MAC: ED:A4:	
		Type: Fitbit, Fitbit Charge HR	
é	Isle of Doas	Received: 09:23:23	
	Isle of Dogs		
5 Google	Isle of Dogs	First Seen: 7 months ago	

RaMBLE - Bluetooth LE Mapper

Context Information Security Tools

E Evervone

***** 27 .

A 9 09:23

-89 dBm

-100 dBm

-97 dBm

-95 dBm

-68 dBm

HISTORY

RaMBLE for Android

"RaMBLE collects BLE advertising packets, and tries to identify devices based on their MAC address and the content of these packets."

www.contextis.com/services/research/ramble-android-bluetooth-le-scanner/

IEEE RFID 2017

Jeffrey Dungen

Sniff and Learn on a Pi!

SNIFFING BLUETOOTH DEVICES WITH A RASPBERRY PI

Hackaday was at HOPE last weekend, and that means we got the goods from what is possibly the best security conference on the east coast. Some of us, however, were trapped in the vendor area being accosted by people wearing an improbable amount of *Mr. Robot* merch asking, 'so what is Hackaday?'. We've all seen *The Merchants Of Cool*, but that doesn't mean everyone was a vapid expression of modern marketing. Some people even brought some of their projects to show off. [Jeff] of reelyActive stopped by the booth and showed off what his team has been working on. It's a software platform that turns all your wireless mice, Fitbits, and phones into a smart sensor platform using of the shelf hardware and a connection to the Internet.

Jeffrey Dungen

Raspberry Pi 3 BLE Sniffer

Detect, visualise and explore BLE advertising packets using the ubiquitous Raspberry Pi, open source software and an easy to follow tutorial.

reelyactive.github.io/make-a-pi-hub.html

Open Source Projects

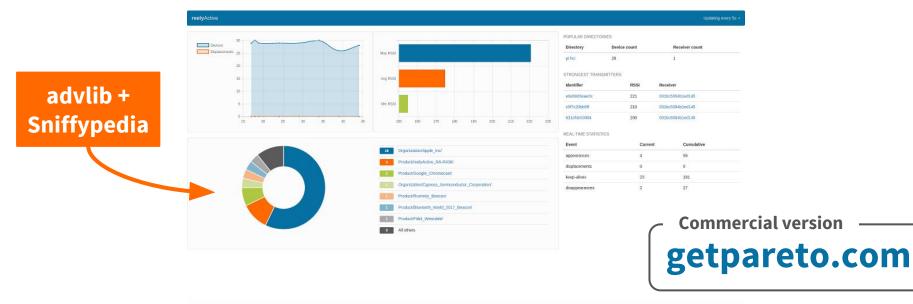
advlib

Javascript library to decode BLE packets. reelyactive.github.io/advlib Presented at IEEE WF-IoT 2015

duviiD.	an open library for	wireless advertising pa	ackets	
Eduction's Low Energy (1)	elphiline			
Raw Payload 430c	b67d3eetc36ba28c2d8cbalc	Sha78c248cbalc		
Select from presents Talance	ng avice			
Bluetooth Low Ene	rgy Packet Elements	Represented as JSON		
Address: Goc3el3e3dol	۳	"wilse": "GSCD#TB07008", "stylesder": (
Address: Sbc3r0x7856		"type": "back may, "backtrick, tracker", "failed: tracker", "ranker: spanise" "		
Date: alfoldebate	,	"andata": ()		

Sniffypedia

"Phone book" of BLE identifiers and metadata. sniffypedia.org Open Database License



Jeffrey Dungen

Live Demo!

This dashboard is open source under MIT License:

dashboard-template-angular | © reelyActive 2016-2017

reelyactive.github.io/dashboard-template-angular

Jeffrey Dungen

BLE as Active RFID @reelyActive | jeff@reelyactive.com